王灵君
    
    发布时间:2024-08-19 发布者:系统管理员 浏览次数: 
   
    
|  |  |  |  | 
|  |  |  |  | 
|  |  |  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | 1999.9-2003.6 济南大学 数学与应用数学 本科2003.9-2008.6 武汉大学 基础数学 硕博连读 | 
|  |  | 
|  | 带旋度二维行波自由面及流函数的正则性研究, 国家自然科学基金青年基金Swift-Hohenberg 方程在两种不同边界条件下的动力系统的研究,冶金工业过 程系统科学湖北省重点实验室非线性退化偏微分方程解的正则性研究,武汉科技大学校青年科技骨干基金 | 
|  | L.-J. Wang, Regularity of traveling periodic stratified water waves with vorticity, Nonlinear Analysis: TMA, 247-263, 81 (2013).· L.-J. Wang, Particle paths in small amplitude solitary waves with negative vorticity, J. Math. Anal. Appl. 211-220, 398 (2013).· H. Chen and L.-J. Wang, A perturbation approach for the transverse spectral stability of small traveling waves of the ZK equation, Kinetic and Related Models, 261-281, 5(2) (2012).· L.-J. Wang, The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval, Comm. Pure and Appl. Anal, 1129-1156, 11 (3) (2012).· L.-J. Wang, Gevrey class regularity for quasi-linear subelliptic equations of second order, Nonlinear Analysis: TMA, 3314-3328 , 73 (2010).· L.-J. Wang, Homoclinic and heteroclinic orbits for the 0^2 or 0^2iw resonance in presence of two reversibilites, Quart. Appl. Math.,1-38, 67 (2009). | 
|  | 
 | 
 | 
 | 
 
        上一条:张青
        下一条:杨芬
    
    【关闭】